264,578 views
9 votes
9 votes
Pre calculus 5. Let g(x) log5|2log3X|. Find the product of the zeros of g.

Pre calculus 5. Let g(x) log5|2log3X|. Find the product of the zeros of g.-example-1
User Srokatonie
by
2.5k points

1 Answer

25 votes
25 votes

First, find the zeros of the function g. To do so, set g(x)=0 and solve for x.


\begin{gathered} g(x)=\log _5|2\log _3x| \\ g(x)=0 \\ \Rightarrow\log _5|2\log _3x|=0 \\ \Rightarrow|2\log _3x|=5^0 \\ \Rightarrow|2\log _3x|=1 \end{gathered}

To solve the equation involving the absolute value, consider two cases.

Case 1. If the expression inside the absolute value is positive, then:


\begin{gathered} |2\log _3x|=2\log _3x \\ \Rightarrow2\log _3x=1 \\ \Rightarrow\log _3x=(1)/(2) \\ \Rightarrow x=3^{(1)/(2)} \end{gathered}

Case 2. If the expression inside the absolute value is negative, then:


\begin{gathered} |2\log _3x|=1 \\ \Rightarrow-2\log _3x=1 \\ \Rightarrow\log _3x=-(1)/(2) \\ \Rightarrow x=3^{-(1)/(2)} \end{gathered}

Then, the zeros of the function g are x=3^(1/2) and x=3^(-1/2).

Find the product of the zeros of g by multiplying them:


3^{(1)/(2)}*3^{-(1)/(2)}=3^{(1)/(2)-(1)/(2)}=3^0=1

Therefore, the product of the zeros of g is 1.

User Prmths
by
3.1k points