Let's use x to represent the second angle of the triangle.
According to the problem, the first angle is 16 degrees more than the second angle. This means that the first angle is x + 16 degrees.
The third angle is three times the second angle, so the third angle is 3x degrees.
We know that the sum of the angles in a triangle is always 180 degrees. Therefore, we can set up an equation to solve for x:
x + (x + 16) + 3x = 180
Simplifying the equation, we get:
5x + 16 = 180
Subtracting 16 from both sides, we get:
5x = 164
Dividing both sides by 5, we get:
x = 32.8
Therefore, the second angle of the triangle is approximately 32.8 degrees.
To find the first angle, we add 16 to x:
x + 16 = 32.8 + 16 = 48.8
Therefore, the first angle of the triangle is approximately 48.8 degrees.
To find the third angle, we multiply x by 3:
3x = 3(32.8) = 98.4
Therefore, the third angle of the triangle is approximately 98.4 degrees.