142k views
4 votes
Simplify the equation

Simplify the equation-example-1
User Etep
by
7.5k points

2 Answers

3 votes

Answer:


a \sqrt[5]{b}

Explanation:

Given expression:


\sqrt[5]{a^3b^2} * \sqrt[5]{a^2b^(-1)}


\textsf{Apply exponent rule} \quad \sqrt[n]{a}=a^{(1)/(n)}:


(a^3b^2)^{(1)/(5)} * (a^2b^(-1))^{(1)/(5)}

As the exponents are the same,


\textsf{apply exponent rule} \quad a^n \cdot c^n=(a \cdot c)^n:


(a^3b^2a^2b^(-1))^{(1)/(5)}

Collect like terms:


(a^3a^2b^2b^(-1))^{(1)/(5)}


\textsf{Apply exponent rule} \quad a^b \cdot a^c=a^(b+c):


(a^((3+2))b^((2-1)))^{(1)/(5)}

Simplify the exponents:


(a^5b^1)^{(1)/(5)}


\textsf{Apply exponent rule} \quad (a^bc^d)^n=(a^b)^n \cdot (c^d)^n:


(a^5)^{(1)/(5)} \cdot (b^1)^{(1)/(5)}


\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):


a^{(5)/(5)} \cdot b^{(1)/(5)}

Simplify:


a^1 \cdot b^{(1)/(5)}


a \cdot b^{(1)/(5)}


\textsf{Apply exponent rule} \quad a^{(1)/(n)}=\sqrt[n]{a}:


a \sqrt[5]{b}

User Miel
by
7.5k points
4 votes

Answer:


a \sqrt[5]{b}

Explanation:

solution Given:


\sqrt[5]{ {a}^(3) {b}^(2) } * \sqrt[5]{ {a}^(2){b }^( - 1) }

since i indices rule if the power is same it can be multiplied or divided.


\sqrt[5]{ {a}^(3) {b}^(2) * {a}^(2) {b}^( - 1) }

since power is added of like terms in multiplication


\sqrt[5]{ {a}^(3 + 2) {b}^(2 - 1) }

again simplifying


\sqrt[5]{ {a}^(5) b}

by using indices formula


\sqrt[x]{ {a}^(y) } = {a}^{ (y)/(x) }

we get


a \sqrt[5]{b}

User MarvMind
by
8.0k points