88.3k views
3 votes
Suppose that f is continuous, 5∫-2 f(x)dx=11 and 5∫-2 f(x)dx=14 Find the value of the integral 2∫5 f(x)dx

Suppose that f is continuous, 5∫-2 f(x)dx=11 and 5∫-2 f(x)dx=14 Find the value of-example-1
User Rafael
by
8.7k points

1 Answer

4 votes

Answer:

C. 3

Explanation:

One of the (many) properties of definite integrals is

\mbox{\large \int\limits _(a)^(b)f(x)\,dx + \int\limits _(b)^(c)f(x)\,dx = \int\limits }_(a)^(c)f(x)\,dx

Therefore

\mbox{\large \int\limits _(-2)^(5)f(x)\,dx + \int\limits _(5)^(2)f(x)\,dx = \int\limits }_(-2)^(2)f(x)\,dx

Given


\mbox{\large \int\limits _(-2)^(5)f(x)\,dx = 11}}}\para

and


\mbox{\large \int\limits _(-2)^(2)f(x)\,dx = 14}}

We get


\mbox{\large 11+ \int\limits _(5)^(2)f(x)\,dx} = 14


Subtracting 11 from both sides we get


\mbox{\large \int\limits _(5)^(2)f(x)\,dx} = 14 - 11 = 3\\

Answer: Choice C which is 3

User Jens Frandsen
by
7.8k points