72.9k views
2 votes
Find the cosine of the angle between the plane 4x-5y+z=4 and the plane 5x-4y+3z=-2

Find the cosine of the angle between the plane 4x-5y+z=4 and the plane 5x-4y+3z=-2-example-1
User Ever Alian
by
8.1k points

1 Answer

6 votes

Given the planes
4x-5y+z=4 and
5x-4y+3z=-2, find the angle between them.

Using the formula,


\theta=cos^(-1) (\frac{A_(x)B_(x)+A_(y)B_(y)+A_(z)B_(z) }{\sqrt{A^2_(x)+A^2_(y)+A^2_(z)}\sqrt{B^2_(x)+B^2_(y)+B^2_(z)} } )

Where vector,
A= < 4,-5,1 > and vector
B= < 5,-4,3 >.

Plug these values into the formula above...


\Longrightarrow \theta=cos^(-1) (\frac{A_(x)B_(x)+A_(y)B_(y)+A_(z)B_(z) }{\sqrt{A^2_(x)+A^2_(y)+A^2_(z)}\sqrt{B^2_(x)+B^2_(y)+B^2_(z)} } )


\Longrightarrow \theta=cos^(-1) (((4)(5)+(-5)(-4)+(1)(3) )/(√((4)^2+(-5)^2+(1)^2)√((5)^2+(-4)^2+(3)^2) ) )


\Longrightarrow \theta=cos^(-1) ((43 )/(√(42)√(50) ) )


\Longrightarrow \theta=cos^(-1) ((43 )/(10√(21) ) )


\Longrightarrow \theta \approx 20.2\textdegree

User Sanchay
by
8.6k points