171k views
3 votes
in terms of m1 , m2 , and g , find the acceleration of the first block in the figure (figure 1). there is no friction anywhere in the system.

1 Answer

0 votes

The acceleration of the first block in terms of the first block and the gravity g is
a = (m_2g - m_1g)/(m_1 + m_2)

How to determine the acceleration of the first block

From the question, we have the following parameters that can be used in our computation:

The figure

Where, we have the frictionless pulley with a negligble mass

The direction of the acceleration is towards the mass m2 i.e. downward

So, we have the following equations


T = m_1a + m_1g


m_2g = T + m_2a

Where

T is the tension in the pulley

By substitution, we have


m_2g = m_1a + m_1g + m_2a

This gives


m_1a + m_2a = m_2g - m_1g

Factor out a from the left hand side


a(m_1 + m_2) = m_2g - m_1g

So, we have


a = (m_2g - m_1g)/(m_1 + m_2)

Hence, the acceleration of the first block is
a = (m_2g - m_1g)/(m_1 + m_2)

in terms of m1 , m2 , and g , find the acceleration of the first block in the figure-example-1
User Michela Bonizzi
by
7.5k points