Answer:
formula:
c^2 = a^2 + b^2 - 2abcos(C)
where c is the length of the diagonal, a and b are the lengths of the legs of the triangle (the non-parallel sides of the trapezoid), and C is the angle between them.
In this case, a = b = 7 feet and C = (180 - 140)/2 = 20 degrees. We can plug these values into the formula to find:
c^2 = 7^2 + 7^2 - 2(7)(7)cos(20)
c = sqrt(98 + 49cos(20))
To use the Law of Sines to find the length of the shorter base, we can use the following formula:
a/sin(A) = b/sin(B) = c/sin(C)
where a, b, and c are the sides of the triangle and A, B, and C are the angles opposite those sides.
Since we know a and b, we can use the formula to find:
x/sin(140) = 7/sin(20)
x = 7sin(140) / sin(20)
Note that the value of c will be in squared units, so you need to take the square root to get the actual length of the diagonal.