46.6k views
0 votes
Find the solution set for the following inequality 4x-7>6x-13

1 Answer

3 votes

Answer:


\\\mathrm{Solution:}\:&amp;\:x < 3\:\\\\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:3\right)

Explanation:


\textrm{We have the inequality $4x-7 > 6x-13$}\\\\\\textrm{Move 7 to the right side: }\\4x + 7 - 7 > 6x -13 + 7\\\\4x > 6x -6\\\\


\mathrm{Move}\:6x\:\mathrm{to\:the\:left\:side}


4x-6x > 6x-6-6x


-2x > -6


\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}


\left(-2x\right)\left(-1\right) < \left(-6\right)\left(-1\right)


== > 2x < 6


\mathrm{Divide\:both\:sides\:by\:}2\\\\


\fdrac{2x}{2} < (6)/(2)\\\\x < 3

So the solution set of the inequality is x < 3 which in interval notation is
(- ∞ , 3)

User Marcelo Barros
by
7.1k points