142,233 views
31 votes
31 votes
Solve:

log_5(24-x)+log_5(-x)=2

User CSharpRocks
by
2.6k points

1 Answer

23 votes
23 votes

Answer:

x = -1

Explanation:

Given equation:


\log_5(24-x)+\log_5(-x)=2


\textsf{Apply the log Product law}: \quad \log_ax + \log_ay=\log_axy


\implies \log_5[-x(24-x)]=2


\implies \log_5(x^2-24x)=2


\textsf{Apply the log law}: \quad \log_ab=c \iff a^c=b


\implies 5^2=x^2-24x

Simplify:


\implies x^2-24x-25=0

Factor the quadratic equation:


\implies x^2+x-25x-25=0


\implies x(x+1)-25(x+1)=0


\implies (x-25)(x+1)=0

Apply the zero product property:


\implies x-25=0 \implies x=25


\implies x+1=0 \implies x=-1

As logs of negative numbers cannot be taken, x = -1 is the only valid solution.

Check by substituting x = -1 into the original equation:


\implies \log_5(24-(-1))+\log_5(-(-1)


\implies \log_5(25)+\log_5(1)


\implies \log_5(5^2)+0


\implies 2\log_5(5)


\implies 2(1)


\implies 2

Hence, the solution is:


\boxed{ x = -1}

User Austen
by
2.7k points