Answer:
AAA similarity
Explanation:
Similar triangles:
In ΔECD,
∠E + ∠D + ∠ECD = 180° {Angle sum property}
∠E + 36 + 123 = 180°
∠E + 159 = 180
∠E = 180 - 159
∠E = 21°
In ΔACB,
∠A + ∠B + ∠ACB = 180° {Angle sum property}
∠ACB + 36 + 21 = 180°
∠ACB + 57 = 180
∠ACB = 180 - 57
∠ACB= 123°
In ΔECD & ΔBCA,
∠A ≅ ∠D
∠B ≅ ∠A
∠BCA ≅ ∠ECA
ΔECD ~ ΔBCA by Angle Angle Angle similarity.