Answer: part 1 of 2
1. The amount required of H₂ = 11.0 g.
2. The amount required of O₂ = 88.0 g.
Step-by-step explanation:
The balanced equation for the mentioned reaction is:
2H₂(g) + O₂(g) → 2H₂O,
It is clear that 2.0 moles of H₂ react with 1.0 mole of O₂ to produce 2.0 moles of H₂O.
Q1: How much hydrogen would be required to produce 5.5 mol of water?
Using cross multiplication:
2.0 mol of H₂ produce → 2.0 mol of H₂O, from stichiometry.
??? mol of H₂ produce → 5.5 mol of H₂O.
∴ the no. of moles of H₂ needed to produce 5.5 mol of water = (2.0 mol)(5.5 mol)/(2.0 mol) = 5.5 mol.
Now, we can get the mass of H₂ needed to to produce 5.5 mol of water:
mass of H₂ = (no. of moles)(molar mass) = (5.5 mol)(2.0 g/mol) = 11.0 g.
Q2: How much oxygen would be required?
Using cross multiplication:
1.0 mol of O₂ produce → 2.0 mol of H₂O, from stichiometry.
??? mol of O₂ produce → 5.5 mol of H₂O.
∴ the no. of moles of O₂ needed to produce 5.5 mol of water = (1.0 mol)(5.5 mol)/(2.0 mol) = 2.75 mol.
Now, we can get the mass of O₂ needed to to produce 5.5 mol of water:
mass of O₂ = (no. of moles)(molar mass) = (2.75 mol)(32.0 g/mol) = 88.0 g.