Use identity:
- a³ - b³ = (a - b)(a² + ab + b²),
Modify it as follows:
- a³ - b³ =
- (a - b)(a² + ab + b²) =
- (a - b)(a² - 2ab + b² + 3ab) =
- (a - b)[(a - b)² + 3ab]
Substitute a = p, b = 1/p and evaluate:
- p³ - 1/p³ =
- (p - 1/p)[(p - 1/p)² + 3p(1/p)] =
- 5(5² + 3) =
- 5(25 + 3) =
- 5(28) =
- 140
Proved