to find the inverse
1. replace f(x) or g(x) or f(n) with y
2. switch places of x and y
3. solve for y
4. replace y with f⁻¹(x) or g⁻¹(x) or f⁻¹(n)
1.
g(x)=3+(x-1)^3
replace
y=3+(x-1)^3
switch
x=3+(y-1)^3
solve
x=3+(y-1)^3
subtract 3
x-3=(y-1)^3
cube root both sides
![\sqrt[3]{x-3}](https://img.qammunity.org/2017/formulas/mathematics/high-school/4r327vsao0l0424sdfnlabd55o9uorc39g.png)
=y-1
add 1
![\sqrt[3]{x-3}](https://img.qammunity.org/2017/formulas/mathematics/high-school/4r327vsao0l0424sdfnlabd55o9uorc39g.png)
+1=y
switch y with g⁻¹(x)
g⁻¹(x)=
![\sqrt[3]{x-3}](https://img.qammunity.org/2017/formulas/mathematics/high-school/4r327vsao0l0424sdfnlabd55o9uorc39g.png)
+1
4. f(x)=x^3+2
replace with y
y=x^3+2
switch x and y
x=y^3+2
solve for y
x=y^3+2
subtract 2
x-2=y^3
cube roo both sides
![\sqrt[3]{x-2}](https://img.qammunity.org/2017/formulas/mathematics/high-school/svzhisyyuvjr327b6uikepl6vvbt4jrc5s.png)
=y
replace with f⁻¹(x)
f⁻¹(x)=
![\sqrt[3]{x-2}](https://img.qammunity.org/2017/formulas/mathematics/high-school/svzhisyyuvjr327b6uikepl6vvbt4jrc5s.png)
5.
f(n)=5

replace
y=5

switch n and y
n=5

solve for y
n=5

divide both sides by 5
n/5=n=

square both sides

=-y+1/2
subtract 1/2 from both sides

-

=-y
multiply both sides by -1
-

+

=y
replace with f⁻¹(n)
f⁻¹(n)=-

+

1. g⁻¹(x)=
![\sqrt[3]{x-3}](https://img.qammunity.org/2017/formulas/mathematics/high-school/4r327vsao0l0424sdfnlabd55o9uorc39g.png)
+1
4. f⁻¹(x)=
![\sqrt[3]{x-2}](https://img.qammunity.org/2017/formulas/mathematics/high-school/svzhisyyuvjr327b6uikepl6vvbt4jrc5s.png)
5. f⁻¹(n)=-

+
