368,370 views
37 votes
37 votes
Solve the systems of equations by substitutiony=4x+13y=6x+19

User Neil Traft
by
2.8k points

1 Answer

17 votes
17 votes

\begin{gathered} \text{Solving the simultaneous equation using substitution method:} \\ \text{firtsly, number the Equation.} \\ y\text{ = 4x + 13 ------(1)} \\ y\text{ = 6x + 19 ------(2)} \\ rewritting\text{ this equation in proper simultaneous form.} \\ y-4x\text{ = 13-----(3)} \\ y-6x\text{ = 19}----(4) \\ from\text{ equation (3), i can make y the subject of the formular.} \\ which\text{ becomes: y = 13 + 4x }-----(5) \\ Then\text{ substitute equation (5) into equation (4)} \\ (13+4x)\text{ - 6x = 19} \\ 13\text{ + 4x - 6x = 19} \\ 13\text{ -2x = 19} \\ -2x\text{ = 19 - 13} \\ -2x\text{ = 6} \\ x\text{ = }(6)/(-2)\text{ = -3} \\ x\text{ = -3 ---------(6)} \\ \text{substutite x into equation (5)} \\ \text{ y = 13 + 4x } \\ y\text{ = 13 + 4(-3)} \\ y\text{ = 13 - 12} \\ y\text{ = 1.} \\ Final\text{ Answer : x = -3 and y = 1} \end{gathered}

User Jerfeson Guerreiro
by
2.6k points