Answer:

General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2015/formulas/mathematics/high-school/2l408t9ucayob5xkw5dsfcngxuati592ud.png)
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2017/formulas/mathematics/high-school/9ehx61og91afh6dw2sn9c4cja5zo84z2d5.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Quotient Rule]:
![\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))](https://img.qammunity.org/2017/formulas/mathematics/college/d69aojmrqnossllpy0rf1jyccfr0tim5v9.png)
Explanation:
Step 1: Define
Identify

Step 2: Differentiate
- Derivative Property [Addition/Subtraction]:
![\displaystyle R' = (d)/(dx)[100] + (d)/(dx) \bigg[ (50)/(\ln x) \bigg]](https://img.qammunity.org/2015/formulas/mathematics/high-school/y15ymd7pd4p4fl1mialw6ugkndlsk466qv.png)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle R' = (d)/(dx)[100] + 50 (d)/(dx) \bigg[ (1)/(\ln x) \bigg]](https://img.qammunity.org/2015/formulas/mathematics/high-school/7a4bwjetb8wegpye0a7chbb0m3ewjp8vh7.png)
- Basic Power Rule:
![\displaystyle R' = 50 (d)/(dx) \bigg[ (1)/(\ln x) \bigg]](https://img.qammunity.org/2015/formulas/mathematics/high-school/rbae70crnmfj27hi2540vjyn33xnly7irw.png)
- Derivative Rule [Quotient Rule]:

- Basic Power Rule:

- Logarithmic Differentiation:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation