167k views
1 vote
Differentiate the following functions s=4e^3t-e^-2.5 w.r.t.t

1 Answer

2 votes

Answer:


\displaystyle (ds)/(dt) = 12e^(3t)

General Formulas and Concepts:

Algebra I

  • Functions
  • Function Notation

Calculus

Derivatives

Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

eˣ Derivative:
\displaystyle (d)/(dx) [e^u]=e^u \cdot u'

Explanation:

Step 1: Define

Identify


\displaystyle s = 4e^(3t) - e^(-2.5)

Step 2: Differentiate

  1. eˣ Derivative:
    \displaystyle (ds)/(dt) = 4e^(3t) \cdot (d)/(dt)[3t] - (d)/(dt)[e^(-2.5)]
  2. Basic Power Rule:
    \displaystyle (ds)/(dt) = 4e^(3t) \cdot 3t^(1 - 1) - 0
  3. Simplify:
    \displaystyle (ds)/(dt) = 12e^(3t)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

User Stephen Henderson
by
7.6k points