Answer:

General Formulas and Concepts:
Algebra I
- Functions
- Function Notation
Calculus
Derivatives
Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2015/formulas/mathematics/high-school/2l408t9ucayob5xkw5dsfcngxuati592ud.png)
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2017/formulas/mathematics/high-school/9ehx61og91afh6dw2sn9c4cja5zo84z2d5.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2017/formulas/mathematics/high-school/5gyznprxgvpgbqhksqa20f0tupnkb4vxej.png)
eˣ Derivative:
![\displaystyle (d)/(dx) [e^u]=e^u \cdot u'](https://img.qammunity.org/2015/formulas/mathematics/high-school/bp34c0gwqrmltpod3ncu48fjlpety2uufv.png)
Explanation:
Step 1: Define
Identify

Step 2: Differentiate
- eˣ Derivative:
![\displaystyle (ds)/(dt) = 4e^(3t) \cdot (d)/(dt)[3t] - (d)/(dt)[e^(-2.5)]](https://img.qammunity.org/2015/formulas/mathematics/high-school/4fq30tno61i2fj3guwi2zubfd5d6zs02ay.png)
- Basic Power Rule:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e