242,553 views
28 votes
28 votes
P and q are roots of the equation 5x^2 - 7x +1. find to value of p^2 x q +q^2 x p

User Nick Chammas
by
3.1k points

1 Answer

28 votes
28 votes

The given quadratic equation is:


5x^2-7x\text{ + 1}

We can solve the equation by equating it to zero and using the quadratic formula method method


\begin{gathered} 5x^2-7x+1\text{ = 0} \\ \text{x = }\frac{\text{-b}\pm\sqrt[]{b^2-4ac}}{2a} \\ \text{x = }\frac{\text{-(-7)}\pm\sqrt[]{(-7)^2_{}^{}-4(5)(1)}}{2(5)} \\ \text{x = }\frac{7\pm\sqrt[]{49^{}_{}-20}}{10} \\ \text{x = }\frac{7\pm\sqrt[]{29}}{10} \\ \text{x = }(7\pm5.385)/(10) \\ x_1\text{ = }(7+5.385)/(10)=(12.385)/(10)=\text{ 1.2385} \\ x_2\text{ = }(7-5.385)/(10)=0.1615 \end{gathered}

The roots of the equation are:

p = 1.2385

q = 0.1615


\begin{gathered} p^2q+q^2p\text{ = (1.2385})^2(0.1615)\text{ + }(0.1615)^2(1.2385) \\ p^2q+q^2p\text{ =}0.2477\text{ + }0.0323 \\ p^2q+q^2p\text{ = }0.28 \end{gathered}

P and q are roots of the equation 5x^2 - 7x +1. find to value of p^2 x q +q^2 x p-example-1
User RobSeg
by
2.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.