182k views
0 votes
If x is a real number such that
x^3 = 729, then
x^2+√(x) equals?

2 Answers

4 votes
First, we find the value of 'x.'

x^(3)=729 \\ x= \sqrt[3]{729}
x=9


x^(2) + √(x)

9^(2)+
√(9)
81+3
= 84

x^(2) + √(x)=84
User Rhu Mage
by
7.6k points
2 votes

x^3 = 729 \\ \\ x^2+√(x) =? \\ \\ x^3 - 729=0 \\ \\ x^3-9^3 = 0\\ \\(x-9)(x^2+9x+81)=0


x^2+9x+81 =0 \ \ or \ \ x-9 = 0\\ \\\Delta =b^2-4ac =9^2-4\cdot 1\cdot 81=81- 324 =-243 \\ \\ and \ we \ know \ when \ \Delta \ is \ negative, \ theres \ no \ solution \\ or \\ x-9=0 \\ \\x=9



a^3-b^3=(a-b)(a^2+ab+b^2) \\\\ \\ x^2+√(x) = 9^2+√(9)=81+3 = 84



User Boucekv
by
7.6k points