26.8k views
1 vote
Please help! I got −1.43844719 and −5.56155281

Use the quadratic formula to solve x2 + 7x + 8 = 0. Estimate irrational solutions to the nearest tenth.

1 Answer

2 votes

\sf~x=(-b\pm√(b^2-4ac))/(2a)

Our equation is in the form of
\sf~ax^2+bx+c

So in this case:


\sf~a=1

\sf~b=7

\sf~c=8


\sf~x=(-7\pm√(7^2-4(1)(8)))/(2(1))

Simplify exponent and the denominator:


\sf~x=(-7\pm√(49-4(1)(8)))/(2)

Multiply:


\sf~x=(-7\pm√(49-32))/(2)

Subtract:


\sf~x=(-7\pm√(17))/(2)

Simplify the square root:


\sf~x\approx(-7\pm4.12310563)/(2)

Now this breaks into two equations.


\sf~x\approx(-7+4.12310563)/(2)

and


\sf~x\approx(-7-4.12310563)/(2)

--------------------------------------------------------------------


\sf~x\approx(-7+4.12310563)/(2)

Add:


\sf~x\approx(-2.87689437)/(2)

Divide:


\sf~x\approx-1.43844719

Round to the nearest tenth:


\sf~x\approx\boxed{\sf-1.44}

--------------------------------------------------------------------


\sf~x\approx(-7-4.12310563)/(2)

Subtract:


\sf~x\approx(-11.1231056)/(2)

Divide:


\sf~x\approx-5.5615528

Round to the nearest tenth:


\sf~x\approx\boxed{\sf-5.56}

--------------------------------------------------------------------

Your answers were correct.
User Logify
by
7.8k points