86.4k views
1 vote
X^5(1-x)^6
How to find the critical points

User Feerlay
by
8.4k points

2 Answers

3 votes

y=x^5(1-x)^6\\ y'=5x^4(1-x)^6+x^5\cdot6(1-x)^5\cdot(-1)\\ y'=x^4(1-x)^5(5(1-x)-6x)\\ y'=x^4(1-x)^5(5-5x-6x)\\ y'=x^4(1-x)^5(5-11x)\\\\ x^4(1-x)^5(5-11x)=0\\ \boxed{x=0 \vee x=1 \vee x=(5)/(11)}
User Mokosha
by
7.7k points
3 votes
Critical points are when the derivative is equal to zero

F(x)=x^( 5 )(1-x)^( 6 )\\ F'(x)=x^( 5 )*-6(1-x)^( 5 )+5x^( 4 )(1-x)^( 6 )\\ F'(x)=-6x^( 5 )(1-x)^( 5 )+5x^( 4 )(1-x)^( 6 )\\ -6x^( 5 )(1-x)^( 5 )+5x^( 4 )(1-x)^( 6 )=0\\ (x^( 4 )(1-x)^( 5 ))(-6x+5(1-x))=0\\ (x^( 4 )(1-x)^( 5 ))(5-11x)=0\\ \\ (x^( 4 )(1-x)^( 5 ))=0\\ x=0\ and\ 1\\ \\ (5-11x)=0\\ x=\frac { 5 }{ 11 } \\ \\ \boxed { Critical\ Points\ at\ x=\frac { 5 }{ 11 }\ ,0,\ and\ 1 }

User Sahid Hossen
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories