Yeah, you'd have to use the inverse function to produce this result.
Let's get the inverse function first:
![y={ x }^( 3 )-2\\ \\ { x }^( 3 )=y+2\\ \\ x=\sqrt [ 3 ]{ y+2 }](https://img.qammunity.org/2016/formulas/mathematics/high-school/sv0mm2ofuep8uweo16kfbt988irkrxsp7n.png)
![\\ \\ \therefore \quad { f }^( -1 )\left( x \right) =\sqrt [ 3 ]{ x+2 }](https://img.qammunity.org/2016/formulas/mathematics/high-school/6lvcc52iuk5t3gs4j5c8s7n76los4kt8cx.png)
Now, we can solve the problem using:
![\int _( -1 )^( 25 ){ \sqrt [ 3 ]{ x+2 } } dx](https://img.qammunity.org/2016/formulas/mathematics/high-school/bgbw5nwkliublhtztj2nf7k5hrvwotbl0q.png)
But to solve the problem more easily we make u=x+2, therefore du/dx=1, therefore du=dx.
When x=25, u=27.
When x=-1, u=1.
Now:
![\int _( 1 )^( 27 ){ { u }^{ \frac { 1 }{ 3 } } } du\\ \\ ={ \left[ \frac { 3 }{ 4 } { u }^{ \frac { 4 }{ 3 } } \right] }_( 1 )^( 27 )](https://img.qammunity.org/2016/formulas/mathematics/high-school/tp9pfra5qhu6oie3sgznzzcohh4an30vqo.png)


Answer: 60 units squared.