461,589 views
23 votes
23 votes
Find sect 。A)B)op回?2121

User Antibus
by
2.6k points

1 Answer

25 votes
25 votes

We will operate as follows:


x=\frac{\sqrt[]{21}}{5}
y=(2)/(5)

Then:


r^2=(\frac{\sqrt[]{21}}{5})^2+((2)/(5))^2\Rightarrow r=1

Then we calculate cosine in order to determine the secant:


\cos (\theta)=(x)/(r)\Rightarrow\cos (\theta)=\frac{\frac{\sqrt[]{21}}{5}}{1}\Rightarrow\cos (\theta)=\frac{\sqrt[]{21}}{5}

Now, the secant:


\sec (\theta)=(1)/(\cos(\theta))\Rightarrow\sec (\theta)=\frac{1}{\frac{\sqrt[]{21}}{5}}
\Rightarrow\sec (\theta)=\frac{5}{\sqrt[]{21}}=\frac{5\sqrt[]{21}}{21}

So, the soluton would be option B.

User Andrea Di Giorgi
by
2.7k points