ANSWER
![3.826\cdot10^(22)N](https://img.qammunity.org/qa-images/2023/formulas/physics/college/kyoxe1uzlulsgcbth6rq.png)
Step-by-step explanation
To find the gravitational force between them, apply the formula for gravitational force:
![F=(GmM)/(r^2)](https://img.qammunity.org/qa-images/2023/formulas/physics/college/dijexz2ikmfnk3vpiz7l.png)
where G = gravitational constant = 6.6743 * 10^(-11) Nm²/kg²
m = mass of Saturn
M = mass of the sun
r = distance between them (radius of Saturn's orbit)
Therefore, the gravitational force between them is:
![\begin{gathered} F=(6.6743\cdot10^(-11)\cdot5.68\cdot10^(26)\cdot1.99\cdot10^(30))/((1,404,219,991,220)^2) \\ F=(75.4409\cdot10^(-11+26+30))/(1.9718\cdot10^(24))=(7.54409\cdot10^(46))/(1.9718\cdot10^(24)) \\ F=3.826\cdot10^(22)N \end{gathered}](https://img.qammunity.org/qa-images/2023/formulas/physics/college/w11pliit0t4a9oqf7s5n.png)