The diagram of forces is shown below
We would express each vector in component form. We have
For F1 = 65 pounds,
F1 = <65Cos30, 65Sin30>
F1 = <56.2917, 32.5>
For F2 = 90 pounds,
F2 = <90Cos45, 90Sin45>
F2 = <63.6396, 63.6396>
For F3 = 125 pounds
F3 = <125Cos120, 125Sin120
F3 = <- 62.5, 108.2532>
Fnet = F1 + F2 + F3
Fnet = <56.2917, 32.5> + <63.6396, 63.6396> + <- 62.5, 108.2532>
Fnet = <56.2917 + 63.6396 - 62.5, 32.5 + 63.6396 + 108.2532>
Fnet = <57.4313, 204.3928>
Magnitude of resultant force = √(57.4313^2 + 204.3928^2)
Magnitude of resultant force = 212.3 pounds
Direction, θ = tan^-1(204.3928/57.4313)
θ = 74.3 degrees