262,880 views
29 votes
29 votes
Which expressions are equivalent to the given expression?510810 I + 108,g 20 - 10810 10

Which expressions are equivalent to the given expression?510810 I + 108,g 20 - 10810 10-example-1
User BalzacLeGeek
by
2.3k points

1 Answer

7 votes
7 votes

Given the following properties for logarithms:


\begin{gathered} b\log_(10)a=\log_(10)a^b...(1) \\ \\ \log_(10)a+\log_(10)b=\log_(10)a\cdot b...(2) \\ \\ \operatorname{\log}_(10)a-\operatorname{\log}_(10)b=\operatorname{\log}_(10)(a)/(b)...(3) \end{gathered}

Then, from the problem, using (1):


\begin{gathered} 5\log_(10)x+\log_(10)20-\log_(10)10 \\ \\ \log_(10)x^5+\log_(10)20-\log_(10)10 \end{gathered}

Now, using (2):


\log_(10)20\cdot x^5-\log_(10)10=\log_(10)(20x^5)-1

Finally, using (3):


\begin{gathered} \log_(10)(20x^5)/(10) \\ \\ \therefore\log_(10)(2x^5) \end{gathered}

Answer: Third and last options

User Lars Juel Jensen
by
2.8k points