The general quadratic equation is:
y = ax² + bx + c
where a, b and c are constants.
Substituting with x = 18.5 and y = 11397, we get:
11397 = a*18.5² + b*18.5 + c
11397 = 342.25a + 18.5b + c (eq. 1)
Substituting with x = 25.5 and y = 16256, we get:
16256 = a*25.5² + b*25.5 + c
16256 = 650.25a + 25.5b + c (eq. 2)
Substituting with x = 35 and y = 16109, we get:
16109 = a*35² + b*35 + c
16109 = 1225a + 35b + c (eq. 3)
Equations 1, 2 and 3 make a system of 3 equations and 3 variables (a, b, and c).
Isolating c from equation 1 and replacing into equations 2 and 3, we get:
11397 = 342.25a + 18.5b + c
11397 - 342.25a - 18.5b = c
16256 = 650.25a + 25.5b + 11397 - 342.25a - 18.5b
16256 - 11397 = 650.25a - 342.25a - 18.5b + 25.5b
4859 = 308a + 7b (eq. 4)
16109 = 1225a + 35b + 11397 - 342.25a - 18.5b
16109 - 11397 = 1225a - 342.25a - 18.5b + 35b
4712 = 882.75a + 16.5b (eq. 5)
Isolating b from equation 4 and replacing into equation 5, we get:
Then, the value of b is:
And the value of c is:
c = 11397 - 342.25*(-43) - 18.5*2586.14
c = 11397 + 14716.75 - 47843.59
c = -21729.84
Therefore, the quadratic regression is:
y = -43x² + 2586.14x - 21729.84
If the price is $22, then x = 22, and the value of y (profit) is:
y = -43*22² + 2586.14*22 - 21729.84
y = -20812 + 56895.08 - 21729.84
y = 14353.24