360,349 views
37 votes
37 votes
Evaluate sine, cosine, and tangent at the following value. Use the reference angle, θ′, and write your answer in exact form: 41π/6

User Vikram Bodicherla
by
2.7k points

1 Answer

15 votes
15 votes

Let us find the reference angle:


\begin{gathered} (41)/(6)\pi\Rightarrow(41)/(6)\cdot(2)/(2)\pi=(41)/(12)\cdot2\pi=(3+(5)/(12))2\pi \\ (41)/(6)\pi\Rightarrow(5)/(6)\pi \end{gathered}

Now, let us to calculate the sine and cosine of this angle:


\begin{gathered} \sin ((5)/(6)\pi)=\sin (150\degree)=0.5 \\ \cos ((5)/(6)\pi)=\cos (150\degree)=\sqrt[]{1-\sin ^2((5)/(6)\pi)}=\sqrt[]{1-0.5^2}=\sqrt[]{(3)/(4)}=\frac{\sqrt[]{3}}{2} \\ \end{gathered}

From this, we have:


\begin{gathered} \sin ((41\pi)/(6))=(1)/(2) \\ \cos ((41\pi)/(6))=\frac{\sqrt[]{3}}{2} \end{gathered}

And because:


\tan (\theta)=(\sin (\theta))/(\cos (\theta))

we can calculate:


\tan ((41\pi)/(6))=\frac{(1)/(2)}{\frac{\sqrt[]{3}}{2}}=(1)/(2)\cdot\frac{2}{\sqrt[]{3}}=\frac{\sqrt[]{3}}{3}

From the solution developed above, we are able to summarize the solution as:


\begin{gathered} \sin ((41\pi)/(6))=(1)/(2) \\ \\ \cos ((41\pi)/(6))=\frac{\sqrt[]{3}}{2} \\ \\ \tan ((41\pi)/(6))=\frac{\sqrt[]{3}}{3} \end{gathered}

User VoodooChild
by
3.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.