145k views
0 votes
F(x)=(lnx)²/2x
give f '(x)=??

User Emmalyn
by
8.4k points

2 Answers

4 votes

f(x)=((\ln x)^2)/(2x)\\\\ f'(x)=(2\ln x\cdot (1)/(x)\cdot2x-(\ln x)^2\cdot2)/((2x)^2)\\ f'(x)=(2\ln x(2-\ln x))/(4x^2)\\ f'(x)=-(\ln x(\ln x-2))/(2x^2)
User Tobias Gies
by
8.3k points
5 votes

f(x)=((lnx)^2)/(2x);\ D_f:x\in\mathbb{R^+}\\\\use:\left[(f(x))/(g(x))\right]'=(f'(x)g(x)-f(x)g'(x))/([g(x)]^2)\\\\f'(x)=([(lnx)^2]'\cdot2x-(lnx)^2\cdot(2x)')/((2x)^2)=(*)\\\\\ [(lnx)^2]'=2lnx\cdot(1)/(x)=(2lnx)/(x)\\\\(2x)'=2\\\\(*)=((2lnx)/(x)\cdot2x-(lnx)^2\cdot2)/(4x^2)=(4lnx-2(lnx)^2)/(4x^2)=([4lnx-2(lnx)^2]:2)/(4x^2:2)=(2lnx-(lnx)^2)/(2x^2)
User Silka
by
8.0k points