129k views
5 votes
Solve log base(x − 1) 16 = 4.

User Herondale
by
8.5k points

2 Answers

2 votes
i hope this helps you


x=3
Solve log base(x − 1) 16 = 4.-example-1
User Danielz
by
8.2k points
4 votes

Answer:

x = 3

Explanation:

Given:
\log _(x-1)\left(16\right)=4

We have to solve for x.

Consider the given expression
\log _(x-1)\left(16\right)=4


\mathrm{Apply\:log\:rule}:\quad \log _a\left(b\right)=(\ln \left(b\right))/(\ln \left(a\right))


\log _(x-1)\left(16\right)=(\ln \left(16\right))/(\ln \left(x-1\right))

Thus, the expression becomes,


(\ln \left(16\right))/(\ln \left(x-1\right))=4

Multiply both side by
\ln \left(x-1\right)


(\ln \left(16\right))/(\ln \left(x-1\right))\ln \left(x-1\right)=4\ln \left(x-1\right)

Simplify, we get,


\ln \left(16\right)=4\ln \left(x-1\right)

Divide both side by 4, we have,


(4\ln \left(x-1\right))/(4)=(\ln \left(16\right))/(4)


(\ln \left(16\right))/(4):\quad \ln \left(2\right)

Thus,
\ln \left(x-1\right)=\ln(2)


\mathrm{When\:the\:logs\:have\:the\:same\:base:\:\:}\log _b\left(f\left(x\right)\right)=\log _b\left(g\left(x\right)\right)\quad \Rightarrow \quad f\left(x\right)=g\left(x\right)

thus, x - 1 = 2

simplify for x, we have,

x = 3

User Manu NALEPA
by
8.0k points