333,162 views
42 votes
42 votes
Calculate the minor arc length AB and the major arc length ACB for circle O shown. What do youknow about their sum? Hint: Think circumference.6 cm135C СO 57 cmO 10 cm25 cmO 20 cm

Calculate the minor arc length AB and the major arc length ACB for circle O shown-example-1
User MarCrazyness
by
2.6k points

1 Answer

13 votes
13 votes

The formula to find the arc length if the angle has been measured in degrees is


\text{ arc length }=\frac{\theta}{360\text{\degree}}\cdot2\pi r

So, for the arc AB, you have


\begin{gathered} \theta=135\text{\degree} \\ r=5\operatorname{cm} \\ \text{ arc length AB }=\frac{135\text{\degree}}{360\text{\degree}}\cdot2\pi(5cm) \\ \text{ arc length AB }=(135)/(360)\cdot10\pi cm \\ \text{ arc length AB }=(15)/(4)\pi cm \end{gathered}

Now, for the arc ACB, you have


\begin{gathered} \theta=360\text{\degree}-135\text{\degree}=225\text{\degree} \\ r=5\operatorname{cm} \\ \text{ arc length ACB }=\frac{225\text{\degree}}{360\text{\degree}}\cdot2\pi(5cm) \\ \text{ arc length ACB }=(225)/(360)\cdot10\pi cm \\ \text{ arc length ACB }=(25)/(4)\cdot\pi cm \end{gathered}

Finally, if you add the arc lengths and leave this sum in terms of π, you have


\begin{gathered} \text{ arc length AB + arc length ACB }=(15)/(4)\pi cm+(25)/(4)\cdot\pi cm \\ \text{Circumference }=((15)/(4)+(25)/(4))\pi cm \\ \text{Circumference }=((15+25)/(4))\pi cm \\ \text{Circumference }=(40)/(4)\pi cm \\ \text{Circumference }=10\pi cm \end{gathered}

Therefore, if you add the length of the minor arc AB and the length of the major arc ACB, you get the circumference of the circle, whose measure is


10\pi cm

User Bach Vu
by
2.7k points