Answer:

General Formulas and Concepts:
Algebra I
- Exponential Rule [Powering]:

Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2017/formulas/mathematics/high-school/5gyznprxgvpgbqhksqa20f0tupnkb4vxej.png)
Integration
- Integrals
- Indefinite Integrals
- Integration Constant C
Integration Property [Multiplied Constant]:

U-Substitution
Explanation:
Step 1: Define
Identify

Step 2: Integrate Pt. 1
Identify variables for u-substitution.
- Set u:

- [u] Differentiate [Exponential Differentiation, Chain Rule]:

Step 3: Integrate Pt. 2
- [Integrand] Rewrite [Exponential Rule - Powering]:

- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] U-Substitution:

- [Integral] Arctrig Integration:
![\displaystyle \int {(e^(3x))/(e^(6x) + 1)} \, dx = (1)/(3) \bigg[ (1)/(1)arctan \Big( (u)/(1) \Big) \bigg] + C](https://img.qammunity.org/2017/formulas/mathematics/high-school/3zs4h2fnkx9csphhdxlgsfow1b1r8wzqcd.png)
- Simplify:

- Back-Substitute:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e