119k views
0 votes
Evaluate the following: integral S (e^3x)/((e^6x)+1) dx
(hint: u=e^3x)

User Aimiliano
by
8.8k points

1 Answer

4 votes

Answer:


\displaystyle \int {(e^(3x))/(e^(6x) + 1)} \, dx = (arctan(e^(3x)))/(3) + C

General Formulas and Concepts:

Algebra I

  • Exponential Rule [Powering]:
    \displaystyle (b^m)^n = b^(m \cdot n)

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Integration

  • Integrals
  • Indefinite Integrals
  • Integration Constant C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Explanation:

Step 1: Define

Identify


\displaystyle \int {(e^(3x))/(e^(6x) + 1)} \, dx

Step 2: Integrate Pt. 1

Identify variables for u-substitution.

  1. Set u:
    \displaystyle u = e^(3x)
  2. [u] Differentiate [Exponential Differentiation, Chain Rule]:
    \displaystyle du = 3e^(3x) \ dx

Step 3: Integrate Pt. 2

  1. [Integrand] Rewrite [Exponential Rule - Powering]:
    \displaystyle \int {(e^(3x))/(e^(6x) + 1)} \, dx = \int {(e^(3x))/((e^(3x))^2 + 1)} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {(e^(3x))/(e^(6x) + 1)} \, dx = (1)/(3)\int {(3e^(3x))/((e^(3x))^2 + 1)} \, dx
  3. [Integral] U-Substitution:
    \displaystyle \int {(e^(3x))/(e^(6x) + 1)} \, dx = (1)/(3)\int {(1)/(u^2 + 1)} \, du
  4. [Integral] Arctrig Integration:
    \displaystyle \int {(e^(3x))/(e^(6x) + 1)} \, dx = (1)/(3) \bigg[ (1)/(1)arctan \Big( (u)/(1) \Big) \bigg] + C
  5. Simplify:
    \displaystyle \int {(e^(3x))/(e^(6x) + 1)} \, dx = (arctan(u))/(3) + C
  6. Back-Substitute:
    \displaystyle \int {(e^(3x))/(e^(6x) + 1)} \, dx = (arctan(e^(3x)))/(3) + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User Jbrookover
by
8.5k points