A function is said to have a vertical asymptote wherever the limit on the left or right (or both) is either positive or negative infinity.
For example, the function f(x)= \frac{-3(x+2)}{x^2+4x+4} has a vertical asymptote at x=-2. For each of the following limits, enter either 'P' for positive infinity, 'N' for negative infinity, or 'D' when the limit simply does not exist.
\displaystyle{ \lim_{x\to -2^-} \frac{-3(x+2)}{x^2+4x+4} = }
\displaystyle{ \lim_{x\to -2^+} \frac{-3(x+2)}{x^2+4x+4} =}
\displaystyle{ \lim_{x\to -2} \frac{-3(x+2)}{x^2+4x+4} =}