I don't have my data booklet handy but this question seems like it can be solved by manipulating the formula PV=nRT
So I would convert .800 atm into Kpa, then turn -19 to Kelvin by adding 273 which gives you . R is a constant represented by 8.314 and n is the moles that you have which is 4.50
when you manipulate the formula you can put it a V=nRTĂ·P
plug in 4.50 for n, 8.314 for R and 254 for T (what your temperature is in Kelvin)
change your atm to Kpa and you can solve for volume ...
P.S this is the ideal gas law so all units should be put in in their proper form, IE; Volume in litres, "n" in moles, R as 8.314, Temperature in Kelvin, and P in KPA