use sin^2(x) =1/2 * (1-cos2x)
cos 2x - use def cosx from table
f(x)=sin^2(0) f'(x)=2*sin(x)*cos(x)
therefore f'(x)=sin(2x)
f''(x)=2cos(2x)
f'''(x)=-4sin(2x)=-4*f'(x)
putting it into maclaurin's series
We get,
0+0+ 2x^2/2! + 0...
9.5m questions
12.2m answers