80,463 views
34 votes
34 votes
6Use DeMolvre's Theorem to find the power of the complex number and write your solution in the form, a. b.128166432

User Interlated
by
2.6k points

1 Answer

12 votes
12 votes

Given


a+ib=1+\sqrt[]{3}i
\begin{gathered} r=\sqrt[]{a^2+b^2} \\ =\sqrt[]{1^2+(-\sqrt[]{3})^2} \\ =\sqrt[]{1+3} \\ =2 \end{gathered}
\begin{gathered} \theta=\tan ^(-1)(b)/(a) \\ \theta=\tan ^(-1)\frac{-\sqrt[]{3}}{1} \\ =-(\pi)/(3) \end{gathered}
\begin{gathered} 1-3i=r(\cos \theta+i\sin \theta) \\ =2(\cos (-(\pi)/(3))+i\sin (-(\pi)/(3))) \end{gathered}

Use Demoivre's theorem,


\begin{gathered} (1-\sqrt[]{3}i)^6=2^6(\cos (-(\pi)/(3)\cdot6)+i\sin (-(\pi)/(3)\cdot6)) \\ =64(1+i\cdot0) \\ =64 \end{gathered}

Thus the required solution is 64

User Jenny Hilton
by
2.7k points