404,097 views
45 votes
45 votes
liquid has an enthalpy of vaporization of 30.8 kJ/mol. At 273 K it has a vapor pressure of 102 mmHg. What is the normal boiling point of this liquid? (R = 8.31 J/(K.mol)a. 257kb. 238kc.273kd.292ke.320k

User Zakkak
by
3.3k points

1 Answer

11 votes
11 votes

Answer:

Option E is correct. 320K

Explanations:

In order to get the normal boiling point of the liquid, we will use the Clausius-Clapeyron equation expressed according to the equation:


\ln ((P_2)/(P_1)_{})=-(\triangle H_(vap))/(R)\cdot((1)/(T_2)-(1)/(T_1))

where:

P1 is the vapor pressure of that substance at T1

P2 is the vapor pressure of that substance at T2

ΔHvap is the enthalpy of vaporization.

R is the gas constant - usually expressed as 8.314J/Kmol

Given the following parameters:


\begin{gathered} P_1=102\operatorname{mm}Hg \\ P_2=760\operatorname{mm}Hg(cons\tan t) \\ T_1=273K \\ \triangle H_{\text{vap}}=30.8\text{kJ/mol} \\ R=8.31\text{J/Kmol} \end{gathered}

Substitute the given parameters into the formula to get T2


\ln (\frac{760_{}}{102_{}}_{})=-\frac{30.8*10^3(J)/(mol)_{}}{\frac{8.31J}{\operatorname{km}ol}}\cdot(\frac{1}{T_2_{}}-\frac{1}{273_{}})

Simplify the result to get the value of T2


\begin{gathered} \ln (7.4509)=-3,706.3778((1)/(T_2)-(1)/(273)) \\ 2.0083=(-3,706.3778)/(T_2)+13.5765 \\ (-3,706.3778)/(T_2)=2.0083-13.5765 \\ (-3,706.3778)/(T_2)=-11.5682 \\ -11.5682T_2=-3,706.3778 \\ T_2=(-3,706.3778)/(-11.5682) \\ T_2=320.39K \\ T_2\approx320K \end{gathered}

Hence the normal boiling point of this liquid is approximately 320K

User SeanW
by
2.8k points