217k views
2 votes
Given the general identity tan X =sin X/cos X , which equation relating the acute angles, A and C, of a right ∆ABC is true?

A. tan A = sin A/sin C
B. cos A = tan (90-A)/sin (90-C)
C. sin C = cos A/tan C
D. cos A = tan C
E. sin C = cos (90-C)/tan A

User Kivylius
by
8.5k points

2 Answers

4 votes
The right anwer is option A.
tan A = sin A / sin C
sin C = sin A / tan A = sin A / (sin A / cos A) = cos A
sin C = cos A
User Volingas
by
8.1k points
2 votes

First, note that
m\angle A+m\angle C=90^(\circ). Then


m\angle A=90^(\circ)-m\angle C \text{ and } m\angle C=90^(\circ)-m\angle A.

Consider all options:

A.


\tan A=(\sin A)/(\sin C)

By the definition,


\tan A=(BC)/(AB),\\ \\\sin A=(BC)/(AC),\\ \\\sin C=(AB)/(AC).

Now


(\sin A)/(\sin C)=((BC)/(AC))/((AB)/(AC))=(BC)/(AB)=\tan A.

Option A is true.

B.


\cos A=(\tan (90^(\circ)-A))/(\sin (90^(\circ)-C)).

By the definition,


\cos A=(AB)/(AC),\\ \\\tan (90^(\circ)-A)=(\sin(90^(\circ)-A))/(\cos(90^(\circ)-A))=(\sin C)/(\cos C)=((AB)/(AC))/((BC)/(AC))=(AB)/(BC),\\ \\\sin (90^(\circ)-C)=\sin A=(BC)/(AC).

Then


(\tan (90^(\circ)-A))/(\sin (90^(\circ)-C))=((AB)/(BC))/((BC)/(AC))=(AB\cdot AC)/(BC^2)\\eq (AB)/(AC).

Option B is false.

3.


\sin C = (\cos A)/(\tan C).

By the definition,


\sin C=(AB)/(AC),\\ \\\cos A=(AB)/(AC),\\ \\\tan C=(AB)/(BC).

Now


(\cos A)/(\tan C)=((AB)/(AC))/((AB)/(BC))=(BC)/(AC)\\eq \sin C.

Option C is false.

D.


\cos A=\tan C.

By the definition,


\cos A=(AB)/(AC),\\ \\\tan C=(AB)/(BC).

As you can see
\cos A\\eq \tan C and option D is not true.

E.


\sin C = (\cos(90^(\circ)-C))/(\tan A).

By the definition,


\sin C=(AB)/(AC),\\ \\\cos (90^(\circ)-C)=\cos A=(AB)/(AC),\\ \\\tan A=(BC)/(AB).

Then


(\cos(90^(\circ)-C))/(\tan A)=((AB)/(AC))/((BC)/(AB))=(AB^2)/(AC\cdot BC)\\eq \sin C.

This option is false.

User Thayif Kabir
by
8.4k points