44.1k views
0 votes
If the half-life of a unstable isotope is 10,00 years and only 1/8 of the radioactive parent remains how old is the sample? A.10,000 B. 20,000 C. 30,000 D. 40,000

User Kaze
by
7.7k points

2 Answers

6 votes
IF the half-life of an unstable isotope is 10,000 years and only 1/8 of the radioactive parent remains, the sample is 30,000 years old.
User Radioreve
by
8.2k points
5 votes

Answer:

C. 30,000

Explanation:

We know that, the exponential function for decay is,


y=ae^(rt)

where,

y = the amount after time t,

a = initial amount,

r = rate of decay.

The half-life of a unstable isotope is 10,000 years, so


\Rightarrow (1)/(2)=1\cdot e^(r\cdot 10000)


\Rightarrow (1)/(2)=e^(r\cdot 10000)


\Rightarrow \ln (1)/(2)=\ln e^(r\cdot 10000)


\Rightarrow -\ln 2={r\cdot 10000}\cdot \ln e


\Rightarrow -\ln 2={r\cdot 10000}\cdot 1


\Rightarrow r=(-\ln 2)/(10000)

Now the function becomes,


y=ae^{(-\ln 2)/(10000)\cdot t}

Now, only 1/8 of the radioactive parent remains, so


\Rightarrow (1)/(8)=1\cdot e^{(-\ln 2)/(10000)\cdot t}


\Rightarrow (1)/(8)=e^{(-\ln 2)/(10000)\cdot t}


\Rightarrow \ln (1)/(8)=\ln e^{(-\ln 2)/(10000)\cdot t}


\Rightarrow -\ln 8={(-\ln 2)/(10000)\cdot t}\cdot \ln e


\Rightarrow -\ln 8={(-\ln 2)/(10000)\cdot t}


\Rightarrow t=(-\ln 8\cdot 10000)/(-\ln 2)


\Rightarrow t=30,000

User Nathan Beach
by
7.9k points