Answer:
Solution of given system of equations is: x=4, y=-2 or (4,-2)
Explanation:
Solve the equation using substitution
4x+y=14
x-2y=8
Substitution method involves placing value of x or y from one equation to other equation.
We have
![4x+y=14--eq(1)\\x-2y=8--eq(2)\\](https://img.qammunity.org/2022/formulas/mathematics/college/ldkf18zlnixfgirip8xvcom5cfje41twsi.png)
Finding value of x from equation 2
x-2y=8
x=2y+8
Put this value of x in equation 1
![4x+y=14Put\:x=2y+8\\4(2y+8)+y=14\\8y+32+y=14\\9y=14-32\\9y=-18\\y=(-18)/(9)\\y=-2](https://img.qammunity.org/2022/formulas/mathematics/college/i68791vk4f16d9oo8hr0q7uv0jcl3s6whe.png)
We get y=-2
Now, put value of y into equation 2 to find value of x
![x-2y=8\\x-2(-2)=8\\x+4=8\\x=8-4\\x=4](https://img.qammunity.org/2022/formulas/mathematics/college/motb1zu9aoffa8hgahwororerphe4qstkb.png)
We get x = 4
So, solution of given system of equations is: x=4, y=-2 or (4,-2)