Given:
The quadratic equation is
![x^2+1=2x-3](https://img.qammunity.org/2022/formulas/mathematics/high-school/b1660wqcvkn5yntt7853urmc1dbchq0b63.png)
To find:
The expression that correctly sets up the quadratic formula with the given equation.
Solution:
We have,
![x^2+1=2x-3](https://img.qammunity.org/2022/formulas/mathematics/high-school/b1660wqcvkn5yntt7853urmc1dbchq0b63.png)
![x^2+1-2x+3=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/4qr9qpo4eclsjvuznnn7qjkjmjcddm3bam.png)
![x^2-2x+4=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/me187u0keppevkz3qwj7zx2ubrssrrj0yk.png)
On comparing with
, we get
![a=1,b=-2,c=4](https://img.qammunity.org/2022/formulas/mathematics/high-school/1wj995mlpqmb40bmrd4la1i7fwu7m8jqdt.png)
The quadratic formula is
![x=(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2022/formulas/mathematics/high-school/jd1mt5sjex107aal1tv0tsad9i7ertp965.png)
Putting
, we get
![x=(-(-2)\pm √((-2)^2-4(1)(4)))/(2(1))](https://img.qammunity.org/2022/formulas/mathematics/high-school/9e98jhgb97ui8sviepip1kv4b8gp14jjao.png)
Therefore, the required expression is
.