136k views
1 vote
What is the solution of log2x + 727 = 3?

2 Answers

2 votes

Answer:

The solution of
log_(2x+7)27\:=\:3 is -2.

Explanation:

Given :
log_(2x+7)27\:=\:3

We have to solve for x.

Consider the given expression
log_(2x+7)27\:=\:3

Apply rule,
\log _a\left(b\right)=(\ln \left(b\right))/(\ln \left(a\right))


\log _(2x+7)\left(27\right)=(\ln \left(27\right))/(\ln \left(2x+7\right))

On simplifying, we get,


(\ln \left(27\right))/(\ln \left(2x+7\right))=3

Multiply both side by
\ln \left(2x+7\right)

We have,


(\ln \left(27\right))/(\ln \left(2x+7\right))\ln \left(2x+7\right)=3\ln \left(2x+7\right)

Multiply fractions as
\:a\cdot (b)/(c)=(a\:\cdot \:b)/(c)

we get,


=(\ln \left(27\right)\ln \left(2x+7\right))/(\ln \left(2x+7\right))==\ln \left(27\right)

Thus, becomes
\ln \left(27\right)=3\ln \left(2x+7\right)

Divide both sides by 3, we have,


(3\ln \left(2x+7\right))/(3)=(\ln \left(27\right))/(3)

Apply rule
\log _a\left(x^b\right)=b\cdot \log _a\left(x\right)


\ln(27)=\ln \left(3^3\right)=3\ln \left(3\right)

Thus,
\ln \left(2x+7\right)=\ln \left(3\right)


\mathrm{When\:the\:logs\:have\:the\:same\:base:\:\:}\log _b\left(f\left(x\right)\right)=\log _b\left(g\left(x\right)\right)\quad \Rightarrow \quad f\left(x\right)=g\left(x\right)

2x+ 7 = 3

Subtract 7 both sides, we get,

2x = 3 - 7

Simplify , we have,

2x = -4

Divide both side by 2, we have

x = -2

Thus, the solution of
log_(2x+7)27\:=\:3 is -2.

User Yas Tabasam
by
8.1k points
2 votes

log _(2x+7) 27 = 3
( 2 x + 7 )³ = 27
( 2 x + 7 )³ = 3³
2 x + 7 = 3
2 x = 3 - 7
2 x = - 4
x = ( - 4 ) : 2
x = - 2
User Johannes Dorn
by
8.9k points

Related questions

2 answers
5 votes
200k views
2 answers
2 votes
210k views