210k views
4 votes
What is the quotient: (6x4 + 15x3 + 10x2 + 10x + 4) ÷ (3x2 + 2)?

a. 2x2 – 5x + 2
b. 2x2 + 5x – 2
c. 2x2 + 5x + 2
d. 2x2 – 5x – 2

User Haochen Wu
by
8.9k points

2 Answers

3 votes
2x^2 + 5x + 2
3x^2 + 2 6x^4 + 15x^3 + 10x^2 + 10x + 4
- 6x^4 + 4x^2
15x^3 + 6x^2 + 10x + 4
- 15x^3 + 10x
6x^2 + 4
6x^2 + 4

Therefore,
(6x^4 + 15x^3 + 10x^2 + 10x + 4) ÷ (3x^2 + 2) = 2x^2 + 5x + 2

User Marcus Griep
by
8.6k points
1 vote

Answer: Option 'C' is correct.

Explanation:

Since we have given that


(\left(6x^4+15x^3+10x^2+10x+4\right))/(\left(3x^2+2\right))

Now, we will find the quotient by factoring the numerator:


\mathrm{Use\:the\:rational\:root\:theorem}\\a_0=4,\:\quad a_n=6\\\\\mathrm{The\:dividers\:of\:}a_0:\quad 1,\:2,\:4,\:\quad \\\mathrm{The\:dividers\:of\:}a_n:\quad 1,\:2,\:3,\:6\\\\\mathrm{Therefore,\:check\:the\:following\:rational\:numbers:\quad }\pm (1,\:2,\:4)/(1,\:2,\:3,\:6)\\\\-(2)/(1)\mathrm{\:is\:a\:root\:of\:the\:expression,\:so\:factor\:out\:}x+2\\\\=\left(x+2\right)(6x^4+15x^3+10x^2+10x+4)/(x+2)\\\\=(6x^4+15x^3+10x^2+10x+4)/(x+2)=6x^3+3x^2+4x+2\\\\

Now, we will factor it again:


=\left(6x^3+3x^2\right)+\left(4x+2\right)\\\\=2\left(2x+1\right)+3x^2\left(2x+1\right)\\\\=\left(2x+1\right)\left(3x^2+2\right)

At last we get our factorised form :


=\left(x+2\right)\left(2x+1\right)\left(3x^2+2\right)\\\\=(\left(x+2\right)\left(2x+1\right)\left(3x^2+2\right))/(3x^2+2)\\\\=\left(x+2\right)\left(2x+1\right)\\\\=2x^2+5x+2

Hence, Option 'C' is correct.

User Lasandra
by
8.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories