421,036 views
38 votes
38 votes
determine the value of x and y your awsner must be in simplest radical form you cannot use sine cosine or tangent since those will give you decimal values

determine the value of x and y your awsner must be in simplest radical form you cannot-example-1
User Lindhe
by
3.2k points

1 Answer

20 votes
20 votes

The Answer:


x\text{ = 10, y = 20}

Step-by-step explanation:

Step 1: Since we cannot use Trigonometric tables, we have to use standard angles.


\begin{gathered} \sin (60)\text{ = }\frac{10\sqrt[]{3}}{y} \\ \text{Therefore, make y the subject of the formula} \\ y\text{ = }\frac{\text{10}\sqrt[]{3\text{ }}}{\text{sin(60)}} \\ \sin (60)\text{ = }\frac{\sqrt[]{3}}{2}\text{ (according to standard angles)} \\ y\text{ = }\frac{\text{10}\sqrt[]{3}}{\frac{\sqrt[]{3}}{2}} \\ we\text{ can rewrite this as:} \\ y\text{ = 10}\sqrt[]{3}\text{ }*\text{ }\frac{2}{\sqrt[]{3}} \\ \sqrt[]{3\text{ }}cancels\text{ out,} \\ y\text{ = 10}*2\text{ = 20.} \end{gathered}

Next we find the value of x this way:


\begin{gathered} \cos \text{ 60 = }(x)/(y) \\ \text{But we already know that y = 20.} \\ \text{Therefore, we make x the subject of the formula;} \\ x=\text{ y}*\cos \text{ 60 = 20 }*\cos \text{ 60 } \\ x\text{ = 20 }*\text{ }(1)/(2)\text{ = 10} \end{gathered}

Thus, the values of x and y are 10 and 20 respectively.

User Eliah Kagan
by
2.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.