Final answer:
To expand the equation (x+δx)^3, use the binomial expansion formula and evaluate the binomial coefficients.
Step-by-step explanation:
To expand the equation (x+δx)^3, we can use the binomial expansion formula. The formula states that (a+b)^n = C(n,0)a^n * b^0 + C(n,1)a^(n-1) * b^1 + C(n,2)a^(n-2) * b^2 + ... + C(n,n)a^0 * b^n, where C(n,k) is the binomial coefficient.
Applying this formula to (x+δx)^3, we have:
(x+δx)^3 = C(3,0)x^3 * (δx)^0 + C(3,1)x^2 * (δx)^1 + C(3,2)x^1 * (δx)^2 + C(3,3)x^0 * (δx)^3
Now we can simplify each term by evaluating the binomial coefficients:
(x+δx)^3 = x^3 + 3x^2 * δx + 3x * (δx)^2 + (δx)^3