56.7k views
4 votes
What are the approximate solutions of 2x2 + 9x = 8 to the nearest hundredth?

1 Answer

4 votes

2x^(2) + 9x = 8 Subtract 8 from both sides

2x^(2) + 9x -8 = 0 Plug these into the Quadratic Formula

a = 2 , b = 9 , c = -8

x =
\frac-{b (+ or -) \sqrt{ b^(2) - 4ac} }{2a} Plug in the values
x =
\frac{-9 (+ or -) \sqrt{ 9^(2)-4(2)(-8) } }{2(2)} Multiply 2 and 2
x =
\frac{-9 (+ or -) \sqrt{ 9^(2)-4(2)(-8) } }{4} Multiply -4 and 2
x =
\frac{-9 (+ or -) \sqrt{ 9^(2)-8(-8) } }{4} Multiply -8 and -8
x =
\frac{-9 (+ or -) \sqrt{ 9^(2)+64} }{4} Square 9
x =
(-9 (+ or -) √(81 + 64) )/(4) Add 81 and 64
x =
(-9 (+ or -) √(145) )/(4) Take apart the (+ or -)
x =
(-9 + √(145) )/(4) and
(-9 - √(145) )/(4) Find the square root of 145
x
(-9 +12.0415945788)/(4) or
(-9 -12.0415945788 )/(4) Add -9 and the decimal , Subtract -9 and the decimal
x ≈
(3.0415945788)/(4) or
(-21.0415945788)/(4) Divide both fractions
x ≈ 0.7603986447 or -5.2603986447 Round to the nearest hundredth (_._x)
x 0.76 or -5.26
User Vinicius Miana
by
7.6k points