176k views
1 vote
Solve x^2-12x+59=0 for x

User Artgrohe
by
8.6k points

2 Answers

6 votes

Answer:

C in simple terms

Explanation:

User Phil McCullick
by
8.6k points
5 votes
You can solve this using the Quadratic Formula, x =
\frac{b (+ or -) \sqrt{ B^(2)-4ac}}{2a}.
a = 1, b = -12, c = 59

x =
\frac{12 (+ or -) \sqrt{(-12)^(2) -4(1)(59)} }{2(1)} Multiply 4 and 1
x =
\frac{12 (+ or -) \sqrt{(-12)^(2) -4(59)} }{2(1)} Multiply 2 and 1
x =
\frac{12 (+ or -) \sqrt{(-12)^(2) -4(59)} }{2} Multiply -4 and 59
x =
\frac{12 (+ or -) \sqrt{(-12)^(2) -236} }{2} Square 12
x =
(12 (+ or -) √(144 - 236) )/(2) Subtract
x =
(12 (+ or -) √(-92) )/(2) You can't find the square root of negatives, so factor the -92 out.
x =
(12 (+ or -) √(4 (-23)) )/(2) You can find the sqaure of 4, so take that out.
x =
(12 (+ or -) 2 √(-23) )/(2) Split the expression into two parts
x =
(12)/(2) (+ or -)
(2 √(-23) )/(2) The 2 in the numerator and the 2 in the denominator cancel each other out
x =
(12)/(2) (+ or -)
√(-23) Divide 12 by 2
x = 6 (+ or -)
√(-23) Now, split the solution into the plus and minus parts.


\left \{ {{x = 6 + √(-23) } \atop {x = 6 - √(-23) }} \right.




User FranSanchis
by
8.7k points