509,342 views
25 votes
25 votes
Using the law of sines, determine whether the given information results in one triangle, two triangle or no triangle at all. Solve any triangle that results. a=8angle B = 57 degreeAngle A =49 degree

Using the law of sines, determine whether the given information results in one triangle-example-1
User Benjamin Bannier
by
3.1k points

1 Answer

7 votes
7 votes

step 1

Find out the measure of angle C

Remember that

In any triangle, the sum of the interior angles must be equal to 180 degrees

so

A+B+C=180 degrees

substitute given values

49+57+C=180

C=180-106

C=74 degrees

step 2

Find out the length side b

Applying the law of sines


(a)/(sinA)=(b)/(sinB)

substitute


(8)/(s\imaginaryI n49^o)=(b)/(s\imaginaryI n57^o)

Solve for b


\begin{gathered} b=\frac{8*s\mathrm{i}n57^o}{s\imaginaryI n49^o} \\ \\ b=8.89\text{ ---> rounded to two decimal places} \end{gathered}

step 3

Find out the length side c

Applying the law of sines


(a)/(s\imaginaryI nA)=(c)/(s\imaginaryI nC)

substitute


(8)/(s\imaginaryI n49^o)=(c)/(s\imaginaryI n74^o)

solve for c


\begin{gathered} c=\frac{8*s\mathrm{i}n74^o}{s\imaginaryI n49^o} \\ \\ c=10.19\text{ ----> rounded to two decimal places} \end{gathered}

therefore

N of triangles is only one

b=8.89

c=10.19

C=74 degrees

User Muhammad Umar
by
3.0k points