f(n)=O(g(n)) means |f(n)|<= M |g(n)| or |f(n)|/|g(n)| <= M so you have to prove, given that f(n)=O(g(n)), that |f(n)∗log2(f(n)c)|/|g(n)∗log2(g(n))| <= N |f(n)∗log2(f(n)c)|/|g(n)∗log2(g(n))| <= M|log2f(n)c)|/|log2(g(n))| = =M log2|(f(n)c -g(n))| <= M log2 (|M|g(n)|c - g(n)|). So it depends on c hope it works