210k views
0 votes
Hey can anybody help me with this question please

Hey can anybody help me with this question please-example-1
User Twilson
by
6.9k points

2 Answers

4 votes

9;\ 10;\ 10;\ 10;\ 10;\ 11\\\\\overline{x}=(9+10+10+10+10+11)/(6)=(60)/(6)=10\\\\\delta^2=\frac{(x_1-\overline{x})^2+(x_2-\overline{x})^2+(x_3-\overline{x})^2+...+(x_n-\overline{x})^2}{n}\\\\\delta^2=((9-10)^2+(10-10)^2+(10-10)^2+(10-10)^2+)/(6)\\(+(10-10)^2+(11-10)^2)/(6)\\\delta^2=((-1)^2+0+0+0+0+1^2)/(6)=(1+1)/(6)=(2)/(6)=(1)/(3)


standard\ deviation:\\\\√(\delta^2)=\sqrt{(1)/(3)}=(\sqrt1)/(\sqrt3)=(1\cdot\sqrt3)/(\sqrt3\cdot\sqrt3)=\boxed{(\sqrt3)/(3)}\approx\boxed{0.58}
User Akash Desarda
by
8.0k points
6 votes

\frac { \Sigma x }{ n } =\frac { 9+10+10+10+10+11 }{ 6 } =10\\ \\ \frac { \Sigma { x }^( 2 ) }{ n } =\frac { { 9 }^( 2 )+{ 10 }^( 2 )+{ 10 }^( 2 )+{ 10 }^( 2 )+{ 10 }^( 2 )+{ 11 }^( 2 ) }{ 6 } =\frac { 301 }{ 3 }

Standard deviation formula:


\sigma =\sqrt { \frac { \Sigma { x }^( 2 ) }{ n } -{ \left( \frac { \Sigma x }{ n } \right) }^( 2 ) }

This means that:


\sigma =\sqrt { \frac { 301 }{ 3 } -{ 10 }^( 2 ) }

Answer:

0.58 (to 2 decimal places)
User Zhirzh
by
8.3k points