Answer:
90% of confidence interval for the true population of club members who use compost
(0.44424 , 0.45576)
Explanation:
Step(i):-
Given that the size of the sample 'n' =200
Given that the sample proportion
p = 45% = 0.45
Level of significance = 90% or 10%
Critical value Zā.āā = 1.645
Step(ii):-
90% of confidence interval for the true population of club members who use compost
![(p^(-) - Z_(0.10) \sqrt{(p(1-p^(-) ))/(n) } , p^(-) + Z_(0.10) \sqrt{(p(1-p^(-) ))/(n) })](https://img.qammunity.org/2022/formulas/mathematics/high-school/7xmu5mmtzfj7p43su4uyb2kvfatqhsege6.png)
![((0.45 - 1.645\sqrt{(0.45(1-0.45))/(200) } , 0.45 + 1.645\sqrt{(0.45(1-0.45))/(200) })](https://img.qammunity.org/2022/formulas/mathematics/high-school/7gsyk2im2praxzyorr3ryakuzbf42yb4u7.png)
(0.45 - 0.00576 , 0.45 +0.00576)
(0.44424 , 0.45576)
Final answer:-
90% of confidence interval for the true population of club members who use compost
(0.44424 , 0.45576)